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For solutions of (inviscid, forceless, one dimensional) Burgers equation with
random initial condition, it is heuristically shown that a stationary Feller–
Markov property (with respect to the space variable) at some time is conserved
at later times, and an evolution equation is derived for the infinitesimal genera-
tor. Previously known explicit solutions such as Frachebourg–Martin’s (white
noise initial velocity) and Carraro–Duchon’s Lévy process intrinsic-statistical
solutions ( including Brownian initial velocity) are recovered as special cases.
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1. INTRODUCTION

We consider the inviscid Burgers equation “tu+“x( 1
2 u2)=0 with random

initial data u0. Burgers equation has originally been introduced as a 1D
model of turbulence. Although it is now clear that it does not exhibit lots
of features of ‘‘true’’ turbulence, we nevertheless still think it is a good
equation on which one can try and find new methods to apply on Euler
equation. Having this in mind, taking random initial data seems quite a
natural problem. It is also physically relevant in the contexts of interface
dynamics, of aggregation of particles, (7) and some others. Burgers equation
with a random force on the r.h.s. has also been studied, mainly as a
‘‘benchmark’’ to test methods designed for (Navier–Stokes) forced turbu-
lence, many of which turn out to produce spurious predictions when
applied to the simpler Burgers case. See ref. 6 for instance (where the
hierarchy of evolution equations for the n-point densities is derived,
including an anomaly term due to the presence of shocks).



In the forceless case, usually ( i.e., with u0 rough enough, such as
Brownian or white noise, or fractionary Brownian or its derivative, etc.)
the solution at time t has a typical ‘‘random sawtooth’’ profile, with slope
1/t everywhere except on a denumerable set of points where negative
jumps (shocks) occur. These jumps move and decrease and eventually
coalesce to form bigger jumps, and the issue here addressed is to describe
the statistics of u(t, · ) for fixed time t, and this is essentially the probability
distribution of the shocks’ locations and sizes.

The case of a Brownian initial data has already been investigated by
Sinai. (12) Carraro and Duchon (4, 5) showed that Lévy processes are con-
served by Burgers equation. They also obtained the explicit evolution
equation for the characteristic function of the Lévy process solutions of
Burgers. A noticeable point is that they made no use of the Hopf–Cole
construction of the solution (Bertoin (2) recovered essentially the same result
with Hopf–Cole).

The case of a white noise initial velocity, first considered by Jan
Burgers himself, (3) was further analyzed by Avellaneda and E (1) who first
observed the Markov property of u at later times (a consequence of
Millar’s theorem on Brownian process with a parabolic drift). This made it
possible for Frachebourg and Martin to do the final step in making the
(single time) statistics of the solution fully explicit.

Since Lévy processes are Markov, the question arises whether the
property of being conserved by Burgers equation is true for more general
Markov processes (for example, an Orstein–Uhlenbeck initial velocity).

Our investigation goes as follows: we consider statistical solutions of
Burgers equation (otherwise called solutions of Hopf equation), and write an
infinite set of equations for the n-point functions of such solutions, which
parallels that established in ref. 6 (but using smooth test functions and
moments instead of densities, we avoid the necessity of a separate anomaly
term due to the presence of jumps). We show that the assumption that the
process is Feller (in space) for all time yields an evolution equation for the
infinitesimal generator of this process. Conversely, a Feller process whose
generator satisfies this equation is a statistical solution of Burgers equation.
This will allow us to recover Carraro and Duchon’s result on Lévy processes,
as a special case. Frachebourg and Martin’s explicit solution (8) in the case of
an initial white noise velocity is also a particular solution to our equation.

2. NOTATIONS AND DEFINITIONS

A Markov process u(x)x ¥ R can be characterized by its one point and
its transition probabilities px(du) and qx, y(u, dv), x < y, that satisfy,
-x0 < · · · < xk and fi borelian positive,
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E 5D
k

i=0
fi(u(xi))6

=F px0
(du0) f0(u0) F qx0, x1

(u0, du1) f1(u1) · · · F qxk − 1, xk
(uk − 1, duk) fk(uk).

A Markov process is homogeneous if its transition probabilities qx, y

depend on x and y only through y − x. In this case, we write qh instead of
qx, x+h.

A process u(x)x ¥ R is stationary if and only if it is translation invariant:
the law of (ux+x1

,..., ux+xn
) does not depend on x. Hence a Markov process

is stationary if and only if it is homogeneous and its one point probability
px(du) does not depend on x.

If u is a homogeneous Markov process, h > 0, and f is a continuous
function vanishing at infinity, we put Qh f(u)=> f(v) qh(u, dv).

A Feller process is a homogeneous Markov process such that for
each f, for each h > 0, Qh f is also continuous and vanishes at infinity, and
lim h Q 0 Qh f=f pointwise.

A Feller process always has a càdlàg version. (10)

One can define the infinitesimal generator of a Feller process: it is the
operator A, defined for all the functions f such that the limit below exists,
by

-x ¥ R, Af(x)= lim
h Q 0+

Qh f(x) − f(x)
h

.

Formally, Qh=exp(hA), Q −

h :=dQ/dh=AQh, and an invariant
measure p0 satisfies tAp0=0.

3. STATISTICAL SOLUTIONS OF BURGERS EQUATION

We will closely follow ref. 5 (see also ref. 11). Let E be the space of
càdlàg real functions equipped with the smallest s-algebra C(E) such that
for each x ¥ R, u W u(x) is measurable. Let D be the set of real C. func-
tions with compact support. A probability m on E is then characterized by
its characteristic function

v ¥ DW F
E

exp 5i F
R

u(x) v(x) dx6 dm(u)=m̂(v).

Let u0: (W, A, P) Q E be a random process, defined on some probability
space, and let m0: C(E) Q [0, 1] denote its probability law. Assume u(x, t)
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is a (weak) solution of Burgers equation with u(. , 0)=u0, u(. , t) ¥ E for
t > 0, and everything makes sense in the following calculation: integrability,
and differentiability with respect to t. Let mt denote the law of u(. , t).
Formally, one then gets for each v ¥ D:

“t m̂t(v)=F
E

“t
3exp 5i F

R
u(x) v(x) dx64 dmt(u)

=F
E

“t
3exp 5i F

R
u(x, t) v(x) dx64 dm0(u0)

=F
E

exp 5i F
R

u(x, t) v(x) dx)6 “t
5i F

R
u(x, t) v(x) dx6 dm0(u0)

=F
E

exp 5i F
R

u(x, t) v(x) dx6 i F
R

1
2 u(x, t)2 vŒ(x) dx dm0(u0)

=i F
E

F
R

1
2 u(x)2 vŒ(x) dx exp 5i F

R
uv6 dmt(u).

Hence our definition of a statistical solution of Burgers equation:

Definition 1. A statistical solution of Burgers equation is a set
(mt)t \ 0 of probabilities on (E, C(E)) such that for any v ¥ D,

“t m̂t(v)=i F
E

F
R

1
2 u(x)2 vŒ(x) dx exp 5i F

R
uv6 dmt(u). (1)

Let us assume now that we have a statistical solution of Burgers equa-
tion, (mt)t \ 0, and that for all t, all the moments of mt are well defined.
Then one can write

exp 5i F
R

u(x) v(x) dx6= C
.

n=0

in

n!
F

Rn
D

n

j=1
u(xj) v(xj) dxj.

Equation (1) thus becomes -v ¥ D,

2 C
.

n=0

in

n!
F

Rn
“tE 5D

n

j=1
u(xj) v(xj)6 D dxj

=i C
.

n=0

in

n!
F

Rn+1
E 5D

n

j=1
u(xj) v(xj) u(x)2 vŒ(x)6 dx D dxj

=i C
.

n=0
in F

x0 < x1 < · · · < xn

C
n

j=0
E 5u(xj)

vŒ(xj)
v(xj)

D
n

k=0
u(xk) v(xk)6 D dxk. (2)
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4. EVOLUTION EQUATION FOR MARKOV SOLUTIONS

We are now looking for solutions such that at each time t, x W u(x, t)
is a stationary Feller process (with respect to space x). We are going to
show that for such processes, the infinite set of Eqs. (2) is equivalent to an
evolution equation for the infinitesimal generator of u.

We thus assume now that the solution x W u(x, t) is a stationary
Feller process, with one point probability p(du, t) and transition probabil-
ity qh(u1, du2, t), Eq. (2) becomes -v ¥ D:

2 C
.

n=1
F

x1 < · · · < xn

dx1 · · · dxn u1v(x1) · · · unv(xn)

× “t[p(du1) qh2
(u1, du2) · · · qhn

(un − 1, dun)]

=i C
.

n=1
in F

x0 < · · · < xn

dx0 · · · dxn p(du0) qh1
(u0, du1) · · · qhn

(un − 1, dun)

×5u0
vŒ

v
(x0)+ · · · +un

vŒ

v
(xn)6 u0v(x0) · · · unv(xn)

=i C
.

n=1
in F

x0 < · · · < xn

dx0 · · · dxn u0v(x0) · · · unv(xn)

× p(du0) qh1
(u0, du1) · · · qhn

(un − 1, dun)

×3u1

q −

h2

qh2

(u1, du2)+u2
5q −

h3

qh3

(u2, du3) −
q −

h2

qh2

(u1, du2)6+ · · ·

+un − 1
5q −

hn

qhn

(un − 1, dun) −
q −

hn − 1

qhn − 1

(un − 2, dun − 1)6− un

q −

hn

qhn

(un − 1, dun)4

(3)
(by integrating by parts; we note hj=xj − xj − 1 and q −

h=“qh/“h).
This equality is equivalent to the following infinite set of equations:

-n ¥ Ng, -x1 < · · · < xn:

2 “tE[u(x1) · · · u(xn)]

=F u1 · · · un p(du1) qh2
(u1, du2) · · · qhn

(un − 1, dun)

×3u1

q −

h2

qh2

(u1, du2)+u2
5q −

h3

qh3

(u2, du3) −
q −

h2

qh2

(u1, du2)6+ · · ·

+un − 1
5q −

hn

qhn

(un − 1, dun) −
q −

hn − 1

qhn − 1

(un − 2, dun − 1)6− un

q −

hn

qhn

(un − 1, dun)4 .

(4)
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One then gets the evolution equations for p, q, and A by taking limits
in which some of the xis are equal. If one makes every xi tend to x1, the
preceding set of equations gives formally, -n ¥ Ng:

2 F “t p(du) un=F p(du)(−UAUn+UnAU)(u)

where Un denotes the function u W un.
If one makes some of the xi’s tend to x1, and the others tend to

x2=x1+h, one then gets -n ¥ Ng, -k < n, -x1 ¥ R, -h ¥ R+g:

2 “tE[u(x1)k u(x1+h)n − k]

=F p(du){ − UA(UkQhUn − k)+Uk+1QhAUn − k

+Uk[A(UQhUn − k) − AQhUn − k+1+Qh(Un − kAU) − Qh(UAUn − k)]}(u).
(5)

One then easily finds, if g is in the domain of A:

2 F “t p(du) g(u)=F p(du)[− uAg(u)+g(u) AU(u)] (6)

2 “tQhg=UAQhg+A(UQhg) − Qh(UAg)

− AQh(Ug)+Qh(gAU) − AUQhg. (7)

These two equalities sum up into one: -g in the domain of A,

2 “tAg=UA2g − A2(Ug)+A(gAU) − AUAg (8)

or, introducing the operators MU and MAU defined as MUg(u)=ug(u) and
MAUg(u)=AU(u) g(u):

2“tA=MUA2 − A2MU+AMAU − MAUA. (9)

If this latter equality holds, one can easily check that if tAp=0 for all time,
then p verifies (6), and Qh=exp(hA) verifies (7).

Hence a Feller statistical solution of (2) is solution of (6) and (7),
which are equivalent to (9).

Conversely, it is a matter of simple algebra to check that (6) and (7)
imply (2): indeed one can then write for any x1 < · · · < xn (recall hi=
xi − xi − 1):
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2 “tE[u(x1) · · · u(xn)]

=2“t F p(du) MUQh2
· · · MUQhn

U(u)

=2 F “t p(du) MUQh2
· · · MUQhn

U(u)

+2 C
n

j=2
F p(du) MUQh2

· · · MUQhj − 1
MU “tQhj

MUQhj+1
· · · MUQhn

U(u)

=F p(du) u[− AMUQh2
MU · · · Qhn

U(u)+Qh2
MU · · · Qhn

U(u) AU(u)]

+ C
n

j=2
F p(du) MUQh2

· · · MU[MUAQhj
gj+A(UQhj

gj) − Qhj
(UAgj)

− AQhj
(Ugj)+Qhj

(gjAU) − AUAgj] (10)

where gj=MUQhj+1
· · · MUQhn

U. Many terms cancel, one gets

=F p(du) u C
n

j=2
Qh2

MU · · · Qhj − 1
MU[MUQ −

hj
− Q −

hj
MU] gj

which is just one integration by parts away from (4). Then (3) follows,
which is the Markovian version of (2).

Therefore, if u(x, t) is a Feller process, it is a statistical solution of
Burgers if and only if its infinitesimal generator is solution of (9). In some
sense, the Feller assumption yields an exact closure of the infinite set (2).
Of course, nothing guarantees the existence of solutions of (9), although we
show later that the Brownian and white noise initial cases give formal
solutions to it. Nevertheless, a close look at Bertoin’s proof using Hopf–
Cole (2) makes us strongly suspect that the absence of positive jumps may
be essential to guarantee the existence of solutions. This would also be
reasonable from a physical point of view: solutions with positive jumps are
unphysical.

5. THE CASE OF LÉVY PROCESSES

We will see how one can recover formally the results of ref. 5. The
initial velocity u0 is here supposed to be a Lévy process (which means that
it has independent and stationary increments) of finite variance having no
negative jumps. This covers in particular the case of u0 Brownian. Such
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processes are characterized by their second exponent f, defined by -x < y,
-l ¥ R+:

E{exp[l(u0(y) − u0(x))]}=exp[(y − x) f(l)].

A Lévy process can be considered as a limit case of stationary Markov
process (the one point distribution p is replaced with Lebesgue measure).
One can also formally define an infinitesimal generator by the relations:
-l ¥ R+,

Ael=f(l) el

where we have noted el the function u W exp(lu) (which of course is not
in the domain of A ...). One can inject these relations into the evolution
equation (9). Using uel(u)=“lel(u), and AU=constant, one gets an
evolution equation for f; it turns out that this equation is also the Burgers
equation:

2 “tf(l)=−“l(f2). (11)

Carraro and Duchon (5) have checked that if f0 is the exponent of a Lévy
process of finite variance with negative jumps, (11) has a smooth solution
for all time t \ 0, which is still the exponent of a homogeneous Lévy
process with negative jumps.

Hence such Lévy processes are conserved by the Burgers equation.
The Brownian case corresponds to f0(l)=l2/2, and this yields f(l, t)=
(1+lt − `1+2lt)/t2.

6. EVOLUTION EQUATION FOR THE JUMP PROCESS

The infinitesimal generator of an arbitrary Markov process can be
written as the sum of three terms (see ref. 10): a diffusion term, a drift
term, and a jump term:

Af(u)=a(u) fœ(u)+b(u) fŒ(u)+F n(u, dv)(f(v) − f(u)).

The measure n(u, dv) represents the jump part of the process: it gives the
mean number of jumps going from u to dv in [x, x+dx], divided by dx,
conditionally as u(x)=u. In our case, all these coefficients will of course
depend on time. To write an evolution equation for n, we assume b=1/t
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and a=0 for t > 0, and all jumps are negative. Equation (9) then yields:
-u > v,

2 “tn(u, dv, t)=
1
t

(u − v)[“un(u, dv, t) − “vn(u, dv, t)]

+F
u

−.

n(u, duŒ, t)[(u − v) n(uŒ, dv, t)+(v − uŒ) n(u, dv, t)]

− F
v

−.

(u − uŒ) n(v, duŒ, t) n(u, dv, t). (12)

7. THE CASE OF AN INITIAL WHITE NOISE PROCESS

Frachebourg and Martin (8) have investigated the case of an initial
white noise velocity. Using the Hopf–Cole construction, they obtain expli-
cit formulas for the laws of u(x, t) and its jumps. They actually rederived
results about Brownian motion with a parabolic drift that had been pre-
viously established by Groeneboom (9) out of the Burgers context. Using
Frachebourg and Martin’s results or Groeneboom’s paper, the infinitesimal
generator in the case of an initial white noise process is found to be, in the
case where Ou0(x) u0(y)P=(1/8) d(x − y):

Af(x)=
1
t

fŒ(x)+4 F
x

−.

(f(y) − f(x))(x − y)
J(yt1/3)
J(xt1/3)

I(xt1/3 − yt1/3) dy

where I and J are given by their Fourier and Laplace transforms in terms
of the Airy function Ai:

J(u)=
1

2ip
F

i.

−i.

dz
exp(uz)

21/3 Ai(2−1/3z)
(13)

2I(u)=(2pu3)−1/2+
1

2ip
F

i.

−i.

exp(uz) 122/3 AiŒ(2−1/3z)
Ai(2−1/3z)

+(2z)1/22 . (14)

We have checked that the evolution equation (9) is indeed verified:
it amounts to expressing convolutions like uI f J, uI f uI, uI f uJ in terms
of JŒ and IŒ. It can be done using relations (13) and (14) and the fact that
Aiœ(x)=x Ai(x).

8. CONCLUSION

We have heuristically shown that for Feller stationary processes, Burgers
equation is equivalent to an evolution equation for their infinitesimal
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generators. It gives strong evidence that the Feller property is conserved by
Burgers equation, although we suspect that the negativity of jumps in the
initial velocity should be required. Our evolution equation provides an
equation for the jump process, and this might lead to other exact statistical
solutions of Burgers equation. The previous exact solutions concerning an
initial Brownian or white noise velocity are both particular solutions of our
equation.
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